SECURII Y INFORMATION

C. 2

CONFIDENTIAL

Copy RM E52K17

FEB 171963

RESEARCH MEMORANDUM

PERFORMANCE OF DOUBLE-SHROUD EJECTOR CONFIGURATION

WITH PRIMARY PRESSURE RATIOS FROM 1.0 TO 10

By Donald P. Hollister and William K. Greathouse

Lewis Flight Propulsion Laboratory Cleveland, Ohio

CLASSIFICATION CHANGED

I	IN	1CI	_ASS	F	ED
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,, ,	

PACA Res das VRV-122 Date

Effective 8 195

DOT 12-19-57

By authority of __

CLASSIFIED DOCUMENT

This material contains information affecting the victional Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 765 and 764, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

February 10, 1953

NACA LIBRARY

LANGE BENOR HI AL LABOR

CONFIDENTIAL

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

PERFORMANCE OF DOUBLE-SHROUD EJECTOR CONFIGURATION WITH

PRIMARY PRESSURE RATIOS FROM 1.0 to 10

By Donald P. Hollister and William K. Greathouse

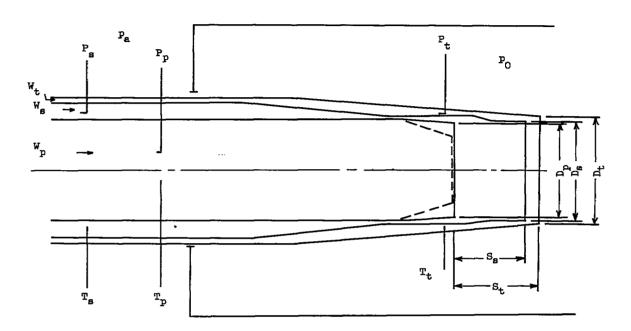
SUMMARY

A brief investigation was made to determine the performance characteristics of a double-shroud cooling-air ejector configuration. Two convergent primary nozzles were used to simulate a specific manufacturer's iris-type variable-area nozzle in the open and closed positions. The investigation comprised four phases: (1) obtaining performance with no secondary or tertiary air flow (cooling-air passages blocked), (2) determining the tendency for backflow to occur in either cooling-air passage, (3) determining the sensitivity of flow in one passage to that in the other, and (4) obtaining pumping and thrust characteristics with secondary and tertiary air flow.

The experimental results showed that the performance with the cooling-air passages blocked was typical of that for single ejectors having diameter and spacing ratios similar to those used in this investigation. There was a tendency for backflow to occur, but the magnitude of such flow was relatively small. The weight flow of each ejector was shown to be essentially independent of the other, and the closed primary-nozzle configuration was found to be generally capable of pumping more cooling-air than the open primary-nozzle configuration. Gains in gross thrust were observed for both configurations, with losses occurring only at low secondary and tertiary pressure ratios.

INTRODUCTION

The use of afterburners for thrust augmentation, and particularly the advent of high-temperature afterburners, increases the cooling-air requirements of turbojet engines. Single-shroud ejectors are now being used for supplying the cooling air. In some aircraft installations, however, it is necessary to provide an additional quantity of air for cooling the aircraft structure; the use of double-shroud ejectors for meeting this requirement is now under consideration.


The single-shroud ejector has been the subject of several experimental investigations (references 1 to 7), but the available information on double-shroud ejectors is very limited. In reference 8, the operating mechanism of double-shroud ejectors is discussed, the performance of several configurations is presented, and it is shown that an ejector of this type can be designed to operate satisfactorily.

The double-shroud ejector configurations used in this investigation incorporated two convergent primary nozzles to simulate a specific manufacturer's iris-type variable-area nozzle in the closed and open positions. Although this investigation was limited to only two configurations, a wider range of pressure ratios and operating conditions was covered than in the investigation reported in reference 8, which primarily presented the pumping and thrust characteristics of each configuration for only four primary pressure ratios. In the present investigation, the thrust and pumping characteristics of both configurations were investigated for eight constant primary pressure ratios from 1.10 to 9.5. Additional tests were conducted to determine (1) ejector performance with no cooling-air flow, (2) the tendency for backflow to occur from the primary jet into either the secondary or the tertiary system, and (3) whether or not the flow through each coolingair system was independent of the flow through the other. This investigation was conducted using dry unheated air at a temperature of 80° F.

SYMBOLS AND NOMENCLATURE

The following symbols and nomenclature used in this report are defined in the accompanying schematic sketch of a double-shroud ejector. It should be noted that primary refers to the engine nozzle, secondary denotes the inner annulus, and tertiary denotes the outer annulus:

2765

exit diameter of primary nozzle, in. D_{p} exit diameter of inner shroud, in. $D_{\mathbf{g}}$ exit diameter of outer shroud, in. $D_{\mathbf{t}}$ inner-shroud diameter ratio $D_{\rm s}/D_{\rm p}$ $\mathbf{D_t}/\mathbf{D_p}$ outer-shroud diameter ratio gross thrust of ejector, lb F_{e,j} gross thrust of primary nozzle with shrouds removed, 1b ${ t F_j}$ $\mathbf{F_{ej}/F_{j}}$ gross thrust ratio

$\mathbf{P}_{\mathbf{p}}$	primary-stream total pressure, in. mercury abs.
P_s	secondary-stream total pressure, in. mercury abs.
Pt	tertiary-stream_total pressure, in. mercury abs.
P_p/P_0	primary pressure ratio
$P_{\rm s}/p_{\rm O}$	secondary pressure ratio
P_t/P_0	tertiary pressure ratio
$\mathtt{p}_{\mathbf{a}}$	atmospheric pressure, in. mercury abs.
\mathbf{p}_{O}	ambient exhaust pressure, in. mercury abs.
S _s	distance from primary-nozzle exit to exit of inner shroud, inner-shroud spacing, in.
$\mathtt{s}_{\mathtt{t}}$	distance from primary-nozzle exit to exit of outer shroud, outer-shroud spacing, in.
s_s/D_p	inner-shroud spacing ratio
s_t/v_p	outer-shroud spacing ratio
Tp	primary-stream total temperature, OR
$\mathbf{T_s}$	secondary-stream total temperature, OR
^T t	tertiary-stream total temperature, OR
$\mathbf{W}_{\mathbf{p}}$	primary weight flow, lb/sec
W _s	secondary weight flow, lb/sec
w_t	tertiary weight flow, lb/sec
$w_{\rm g}/w_{\rm p}$	secondary weight-flow ratio
w_t/w_p	tertiary weight-flow ratio

APPARATUS

Ejector Research Facility

The ejector-research facility shown in figure 1 consists of two concentric ducts simulating an engine tail pipe and a cooling-air passage. For this investigation, a third concentric duct was added to provide a cooling-air passage for the outer shroud. Air was supplied from the laboratory air-supply system to these ducts, as shown, and was passed through the primary nozzle and the cooling-air passages into the exhaust chamber. The air was supplied at a pressure of 40 pounds per square inch gage, a temperature of approximately 80°F, and a dew point of -20°F. The exhaust chamber was connected to the laboratory exhaust system so that the ejector exit pressure could be varied from atmospheric to about 2 pounds per square inch absolute.

The primary, secondary, and tertiary air flows were measured by means of standard A.S.M.E. sharp-edge orifices. The total pressures and temperatures were measured with total-pressure tubes and single, bare-wire, ironconstantan thermocouples, respectively. The primary measuring station, located 20 inches upstream of the primary-nozzle exit, consisted of two total-pressure tubes, two wall static taps, and one thermocouple. The total-pressure tubes and the thermocouple projected about one-third of the duct diameter into the stream, because surveys had shown that measurements at this location gave the average of the total-pressure profile. The secondary instrumentation, consisting of two total pressure tubes and one thermocouple, was located at a station about $27\frac{1}{2}$ inches upstream of the primary-nozzle exit. This instrumentation was duplicated for the tertiary stream at a station about $1\frac{1}{8}$ inches upstream of the primarynozzle exit. The ejector exit pressure was measured in the exit plane of the outer shroud by means of two static-pressure tubes attached to the outside wall of the outer shroud.

The lower portion of the facility is connected to the laboratory-air supply system by means of flexible bellows and is pivoted to a steel frame in order that the axial force may be freely transmitted to a null-type balanced-pressure diaphragm, thrust-measuring cell. The output pressure of this cell is directly proportional to the applied force and, hence, is a direct measure of the resultant force acting on the ejector in an axial direction. In order that the force on the thrust cell would always be in one direction, an axial preload force, consisting of a counterweight connected to the rig by large pulleys and steel tapes, was applied to the thrust cell.

Ejector Models

In this investigation two conical nozzles having areas equivalent to a specific manufacturer's iris-type variable-area nozzle in the open and closed positions were used. The relative location of the shrouds with respect to the two primary nozzles is shown in figure 2. The open and closed primary nozzles had exit diameters of 4.79 and 3.49 inches, respectively, and the corresponding half-cone angles were 2°57' and 20°35'. The inside diameter of the approach pipe to the primary nozzles was 5 inches. The inner shroud was essentially cylindrical and had an exit diameter of 5.65 inches. The conical outer shroud had an exit diameter of 6.30 inches and a half-cone angle of 7°18'. The spacing and diameter ratios for both configurations are shown in the table in figure 2.

PROCEDURE

Each of the two primary nozzles was calibrated to determine the flow coefficients and the primary nozzle thrust over a range of pressure ratios from 1.0 to 10. The various primary pressure ratios were obtained by throttling the inlet air and by reducing the ambient pressure in the exhaust chamber. With the shrouds in place, the investigation of each complete double-shroud ejector configuration consisted of four phases. The first phase was an investigation of the performance over a range of primary pressure ratios from 1.0 to 10 with the shroud-inlet passages blocked (zero secondary and tertiary air flow). The second phase consisted in determining the tendency for backflow to occur in either of the two cooling-air passages and the magnitude of such flow. In order to accomplish this, the duct controlling the total air flow to the two cooling-air passages was blocked while the valves interconnecting the secondary and tertiary systems were open so as to allow air to circulate through the two interconnected systems.

The third phase was an investigation of the interaction and consequent sensitivity of each cooling-air system to the other. This phase was conducted at a constant primary pressure ratio of about 3.0; while the tertiary weight flow ratio, and hence the tertiary pressure ratio, was varied over a range of values, and the secondary weight flow ratio was so varied as to maintain a constant secondary pressure ratio of 1.30. In this way the effect of tertiary flow on the secondary weight-flow ratio was determined. The effect of secondary flow on the tertiary weight-flow ratio was determined in a similar manner; that is, by varying the secondary weight-flow ratio while a constant tertiary pressure ratio of 1.30 was being maintained.

The final phase was that of determining the pumping and thrust characteristics for a range of constant primary pressure ratios from 1.10 to 9.5. This phase was conducted with the total pressures in the two cooling passages approximately equal, so as to simulate a common inlet and plenum chamber for the two cooling-air passages. Although ejector performance was determined with 80° F primary, secondary, and tertiary air, the weight flow ratios presented herein are multiplied by $\sqrt{T_{\rm g}/T_{\rm p}}$ and $\sqrt{T_{\rm t}/T_{\rm p}}$ as a reminder that the application of these data to hot jet installations requires a temperature correction.

The axial force transmitted to the thrust cell was composed of the ejector thrust force, the pressure-area force imposed on the system by the difference between atmospheric pressure and the ejector exit pressure in the exhaust chamber, and the axial preload force. The pressurearea force was determined from a calibration over the range of ejectorexit pressures used in the investigation. The ejector thrust was obtained by subtracting the force acting on the thrust cell from the sum of the preload and the pressure-area forces. In order that the thrust data be consistent and accurate, the pressure-area force-calibration curve was checked daily throughout the investigation.

RESULTS AND DISCUSSION

Zero Secondary and Tertiary Flow

Performance. - The performance of the closed and the open primarynozzle configurations with zero secondary and tertiary air flow is shown in figures 3(a) and 3(b) and in table I. The effect of primary pressure ratio on secondary pressure ratio is typical of single-shroud cylindrical ejectors having diameter and spacing ratios similar to those used in this investigation. The effect of primary pressure ratio on tertiary pressure ratio is typical of that of single-shroud conical ejectors having very small spacing ratios; such would be the case if the inner shroud were considered the primary nozzle and the spacing were the distance from the exit of the inner shroud to the exit of the outer shroud.

It should be noted that the curve of secondary pressure ratio in figure 3(a) exhibits a marked amount of hysteresis and the tertiary pressure ratio curve shows a slight amount of hysteresis in the primary pressure ratio range from 3.5 to 5.0 as indicated by the arrows on the curves. This phenomenon has previously been encountered with cylindrical ejectors having large diameter ratios and small spacing ratios, as shown in reference 1, but has not been observed for small diameter ratios. Hysteresis occurs because the primary jet remains attached to the shroud wall until the primary pressure ratio is decreased to a value less than that at which attachment first occurred as the primary pressure ratio

was being increased. The jet finally becomes detached at this lower primary pressure ratio, and the shroud pressures assume their normal values. A further discussion of this hysteresis may be found in reference 1.

Thrust characteristics. - The effect of primary pressure ratio on gross thrust ratio for zero secondary and tertiary air flow is presented in figure 4(a) for the closed primary-nozzle configuration and in figure 4(b) for the open primary-nozzle configuration. Gross thrust ratio is defined as the ratio of ejector gross thrust F_{ej} to the primary nozzle (ejector shrouds removed) gross thrust F_{j} at the same primary pressure ratio. Ejector gross thrust F_{ej} , then, includes the combined thrust produced by the mass flow through the cooling-air passages, and the primary-nozzle gross thrust F_{j} includes only the thrust produced by the mass flow through the primary nozzle.

The thrust characteristics with the closed-nozzle configuration (fig. 4(a)) exhibit hysteresis similar to that for the secondary pressure ratio (fig. 3(a)), and indicate that a loss in gross thrust of as much as 33 percent of primary-nozzle gross thrust is possible with this configuration when the cooling-air flow is zero. Hysteresis did not occur for the open primary-nozzle configuration with zero cooling-air flow (fig. 4(b)); the greatest loss in gross thrust occurred at a primary pressure ratio of 2.0 and amounted to about 17 percent of the primary-nozzle gross thrust.

A comparison of figures 4(b) and 3(b) shows that the minimum gross thrust ratio occurred at the primary pressure ratio for which the secondary pressure ratio was a minimum, and that a slight dip occurred in the gross-thrust-ratio curve at the primary pressure ratio for which the tertiary pressure ratio was a minimum. This phenomenon may be attributed to shock losses accompanying the overexpansion of the primary jet. A more complete discussion of the effects of overexpansion and shock losses on ejector thrust may be found in reference 2.

A further comparison of figures 4(a) and 4(b) indicates that with zero secondary and tertiary flow, the gross thrust was higher with the open primary-nozzle configuration (small diameter ratio). This relation is consistent with the trends indicated by the data of reference 2.

Effect of Primary Pressure Ratio on Backflow

In order for backflow to occur in one of the two cooling-air passages, the pressure in one passage must be higher than the pressure in the other. An inspection of figures 3(a) and 3(b) indicates the regions of primary

pressure ratio in which backflow will occur. That is, for the regions in which the secondary pressure ratio curve lies below the tertiary pressure ratio curve, (secondary pressure ratio is less than tertiary pressure ratio in figs. 3(a) and 3(b)), the circulation of air is in the normal direction through the secondary passage and is reversed through the tertiary system. For the opposite conditions of secondary and tertiary pressure ratio, the circulation is reversed.

The effect of primary pressure ratio on backflow is shown in figures 5(a) and 5(b) and in table II for the closed and the open primary nozzles. The magnitude of the backflow, although measurable, was very small; less than 0.2 percent of primary air flow through the closednozzle configuration, and slightly exceeding 0.4 percent of primary air flow for the open-nozzle configuration. This test simulated a common inlet plenum chamber for the two cooling-air passages with no external source of air; the positive portion of each curve therefore indicates circulation in the normal direction through the secondary passage and in a reverse direction through the tertiary system. The negative portion of the curve indicates circulation in the opposite direction, with backflow occurring through the secondary system and flow in the normal direction existing in the tertiary passage. The direction of the circulation flow for each configuration reverses (magnitude of backflow becomes zero) at approximately the same primary pressure ratios at which the value of primary and secondary pressure ratio become equal (figs. 3(a) and 3(b)). It should be noted that the data of figure 5(a) were obtained in the direction of increasing primary pressure ratio, and thus any effect of hysteresis on backflow is not included.

Interaction of Secondary and Tertiary Systems

Investigation of the interaction between the secondary and tertiary flow systems indicated that there was little interaction between the two systems. The weight flow through each shroud was insensitive to changes through the other, as shown in table III and in figures 6 to 9 for the closed and the open primary nozzles. For a primary pressure ratio of about 3.0 and a secondary pressure ratio of about 1.3, with the primary nozzle in the closed position, the secondary weight-flow ratio was essentially independent of the tertiary weight-flow ratio as the tertiary weightflow-ratio increased from 0.02 to 0.15 (fig. 6). Likewise, while varying the secondary weight-flow ratio with the primary nozzle closed, the tertiary weight-flow ratio was essentially constant for a constant tertiary pressure ratio of about 1.3 (fig. 7). Similar results were obtained for the open primary-nozzle configuration (figs. 8 and 9). Although this effect was investigated only at a primary pressure ratio of about 3.0, it is believed that these characteristics are representative of those which would be obtained at other primary pressure ratios.

Ejector Performance

Pumping characteristics. - The pumping characteristics of the double-shroud ejector configuration with the closed primary nozzle are presented in figure 10 for several primary pressure ratios from 1.10 to 9.5, and are tabulated in table IV. As mentioned previously, the total pressures in the two cooling passages were maintained approximately equal for this phase of the investigation. The effect of secondary pressure ratio on secondary weight-flow ratio is shown in figure 10(a), and the corresponding tertiary-system pumping characteristics are shown in figure 10(b). A comparison of the two figures discloses that the pumping ability of the secondary and the tertiary systems are nearly identical. It is evident from these data that at low primary pressure ratios secondary and tertiary weight-flow ratios were extremely sensitive to variations in secondary and tertiary pressure ratios. As the primary pressure ratio was increased this sensitivity of secondary and tertiary flow became less pronounced.

The secondary and the tertiary weight-flow ratios with the open primary nozzle are shown in figures 11(a) and 11(b), respectively, and in table IV. A comparison of these figures reveals that the secondary outperforms the tertiary system at the lower primary pressure ratios over the entire range of secondary and tertiary pressure ratio, and at primary pressure ratios of 3.0 and 4.0 at the lower secondary and tertiary pressure ratios. For the three highest primary pressure ratios investigated (6.0, 8.0, and 9.5), the tertiary system pumps a far greater amount of air than the secondary. Again, the sensitivity of the weight-flow ratios to changes in secondary and tertiary pressure ratio decreased greatly with increasing primary pressure ratio.

A comparison of figures 10 and 11 shows that, for a given primary pressure ratio, the weight-flow ratios for the open primary-nozzle configuration are, in general, considerably lower than for the closedprimary configuration. This comparison also discloses, as pointed out in reference 8, that for the closed primary-nozzle configuration (large diameter ratio), the secondary and tertiary weight-flow ratios were more sensitive to changes in secondary and tertiary pressure ratio for any particular primary pressure ratio, than for the open primary-nozzle configuration (small diameter ratio). The open primary-nozzle configuration will, however, pump secondary and tertiary air over a wider range of secondary and tertiary pressure ratios and will start pumping at a lower primary pressure ratio. These comparisons indicate that ejector performance is not compatible with afterburner-cooling requirements, in that there is a great excess of air for the nonafterburning (closed primary nozzle) condition. Also, because the required tertiary flow is generally about one-fifth that required for the secondary system, there is a great excess of tertiary air for most conditions. As pointed out in reference 8, such an excess of tertiary air flow can be reduced by decreasing the

tertiary diameter and spacing ratios to values slightly larger than the secondary diameter and spacing ratios.

Thrust characteristics. - The effect of secondary and tertiary pressure ratio on gross thrust ratio is shown in table IV and in figures 12(a) and 12(b) for the closed and open primary-nozzle configurations, respectively. For the closed-primary nozzle, a gain in gross thrust was obtained for all primary pressure ratios, although with primary pressure ratios of 8.0 and 9.5 there was a loss in gross thrust at secondary and tertiary pressure ratios below about 1.0. These losses were as much as 4 percent and $4\frac{1}{2}$ percent, respectively, at the primary pressure ratios of 8.0 and 9.5. Data for a primary pressure ratio of 1.10 indicated that a gain in gross thrust of about 34 percent was obtainable, which was due, in most part, to the relatively large mass flow through the second-

ary and tertiary systems. Data for the open nozzle (fig. 12(b)) also show that a gross thrust gain is obtainable for all primary pressure ratios, with losses occurring at the low secondary and tertiary pressure ratios for primary pressure ratios of 1.10, 1.50, 4.0, and 6.0.

A comparison of figures 12(a) and 12(b) reveals the same general thrust trends that were observed in the earlier investigation of double-shroud ejectors (reference 8). These curves also follow the same general

thrust trends that were observed in the earlier investigation of double-shroud ejectors (reference 8). These curves also follow the same general trends as the weight-flow curves in figures 10 and 11; namely, that for any given primary pressure ratio, the thrust curves for the closed primary nozzle lie above those of the open-nozzle configuration. This is due, in part, to the greater secondary and tertiary mass flows at given secondary and tertiary pressure ratios for the closed primary-nozzle configuration. Also the greater expansion ratio of the closed primary nozzle would contribute to higher thrust ratios at the high primary pressure ratios. Although the higher thrust ratios were obtained with the closed primary-nozzle configuration, it does not necessarily follow that this is the best configuration, in view of the large amount of secondary and tertiary air that is being pumped.

The sensitivity of the gross thrust ratio to changes in secondary and tertiary pressure ratio is, in general, less for the open primary-nozzle configuration. Furthermore, for each configuration this sensitivity to secondary and tertiary pressure ratio decreases as the primary pressure ratio increases.

Application of Data

As pointed out in reference 8, the performance of an ejector in an actual installation will depend upon the performance of the ejector itself as a pump and upon the performance of the cooling-air flow system for a range of operating conditions. Also, a correction must be applied to the

2765

weight-flow ratios to take into consideration the ratio of cooling-air temperature to engine-gas temperature, as described in reference 3. However, this correction may not be valid under all conditions, particularly at the high temperature ratios; some error may therefore result, as indicated in reference 4. However, the comparisons of full-scale and model-ejector data shown in this reference are believed to show greater discrepancies than would have been the case had the configurations been exact scale models of the ejectors used. Until more complete high-temperature ejector data are available, the data presented herein should give an indication of trends to be expected from double-shroud ejectors having similar configurations and will serve as a supplement to the data contained in reference 8.

CONCLUDING REMARKS

Data obtained with a double-shroud ejector configuration, using two different size convergent primary nozzles in order to simulate a specific manufacturer's variable-area iris-type nozzle in the closed and in the open positions, indicated that the performance with the coolingair passages blocked was typical of that for single ejectors having similar diameter and spacing ratios. Also indicated was a possible gross thrust loss of as great as 33 percent of primary-nozzle gross thrust with the primary nozzle in the closed position and with no cooling-air flow. For the open-primary-nozzle configuration and no cooling-air flow, the thrust losses were reduced to 17 percent of primary-nozzle gross thrust. For both configurations the magnitude of backflow was relatively small. There was very little interaction between the secondary and tertiary flow systems as each system was essentially unaffected by changes in flow through the other. A comparison of the pumping characteristics for both configurations indicates that, in general, the closed primary-nozzle configuration is capable of pumping more cooling air; whereas the opennozzle configuration will pump over a greater range of secondary and tertiary pressure ratios.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio

REFERENCES

1. Kochendorfer, Fred D., and Rousso, Morris D.: Performance Characteristics of Aircraft Cooling Ejectors Having Short Cylindrical Shrouds. NACA RM E51EO1, 1951.

- 2. Ellis, C. W., Hollister, D. P., and Sargent, A. F., Jr.: Preliminary Investigation of Cooling-Air Ejector Performance at Pressure Ratios from 1 to 10. NACA RM E51H21, 1951.
- 3. Wilsted, H. D., Huddleston, S. C., and Ellis, C. W.: Effect of Temperature on Performance of Several Ejector Configurations. NACA RM E9E16, 1949.
- 4. Wallner, Lewis E., and Jansen, Emmert T.: Full-Scale Investigation of Cooling Shroud and Ejector Nozzle for a Turbojet Engine Afterburner Installation. NACA RM E51J04, 1951.
- 5. Greathouse, W. K., and Hollister, D. P.: Preliminary Air-Flow and Thrust Calibrations of Several Conical Cooling-Air Ejectors with a Primary to Secondary Temperature Ratio of 1.0. I Diameter Ratios of 1.21 and 1.10. NACA RM E52E21, 1952.
- 6. Greathouse, W. K., and Hollister, D. P.: Preliminary Air-Flow and Thrust Calibrations of Several Conical Cooling-Air Ejectors with a Primary to Secondary Temperature Ratio of 1.0. II Diameter Ratios of 1.06 and 1.40. NACA RM E52F26, 1952.
- 7. Huddleston, S. C., Wilsted, H. D., and Ellis, C. W.: Performance of Several Air Ejectors with Conical Mixing Sections and Small Secondary Flow Rates. NACA RM E8D23, 1948.
- 8. Ellis, C. W., Hollister, D. P., and Wilsted, H. D.: Investigation of Performance of Several Double-Shroud Ejectors and Effect of Variable-Area Exhaust Nozzle on Single Ejector Performance.

 NACA RM E52D25, 1952.

	Primary- stream total pressure p (in. mercury absolute)	Secondary- stream total pressure ; s (in. mercury absolute)	rertiary- stream total pressure Pt (in. persory absolute)	Ambient exhaust pressure Po (in. meroury absolute)	Primary wright flow wp (lb/sec)	Secondary weight flow W _B (1b/sec)	Tertisry weight flow Y _t (lb/see)	thrust of pri- mery nonsis with removed F	gross thrust of elso- tur Pel (16)	Printry- streem total temper- ature Tp (9%)	Secondary- stream total temper- ature Ty (°R)	Tertlary- stream total tamper- ature T _t	Primary pressure ratio P _p /P ₀	Secondary pressure ratio P _S /P _O	pressure ratio Pt/Pg	Secondary meight- flow resion ye Vr	Tertiary weight- riow ratio Ht /Tt	three re i
_			L			L		[15] (a)	la mai	elas at		<u> </u>	<u> </u>				L	<u> </u>
ī	30.19	14.94	14,86	14.99	2.02	1 0	0 77	97.5	107.4	551.0			2.014	0.8947	0.007	•	0	1.09
2 5	30.54 30.59	12.00	11.90 9.75	12.05 2.30	5.02 3.03	8	8	118.5	181.4	61.0			2.618 3.090	,9969 ,9889	.9876 .9848	8	8	1.05
:	34.84	9.49	1.73 9.59	9.63	3.44	0	6	148.1 174.5	188.4	861,6			3.471 3.968	.9810	.9770 .9766	e e	6	1.04
:	49,09	9.17	9,66	9.98	4.50	į	j	207.6 250.3	107.0	851.5 869.0			4.507	3750	.9709 .9599	4	8	1,00
إ	50.29	5.86	9.63	9.M	5,06	و ا	اةا	258.4	182.0	851.5			5.00	3.C93,	,4568	arc/dus	{ ō	75
5	65,29 45,62	4:台	9,44	9,76	5,54 4.65	8	8	208.7	113,5 113,5	584.0			4,660	.4831 .8999	90.00	8	8	1:5
1	47.07	3.50 3.03	10.18 9.78	10.69	4,78	Ö	8	217.2	167.6 124.0	B49.0	<u>:</u>		5.85E	,380ê ,2979	9613	200	[8	174
	38.17	2:89	9.61	10.04	3.64	0	٥	157.9	106.2	849.0			3.803	,2978	65.72		F ò	1 .44
1	38.02 45.17	9,54 8,96	9.55 1.49	9.57 9.63	3.52 4.55	0	&	209.9	155.0 209.7	549.0 549.0		==	3,659 4,509	.9760 .9118	.9749 .9664	9		1.0
	47,32 48,62	9.45 7.88	9,48	7.42 1.88	4.80	0	8	202.2 229.3	230.4	549.0			4,819	. 8588 .0047	9455 9596	ď	8	.9
Ī	49.47 49.42	5.70 3.65	1.97 9.47	10.59	5.06 5.01	Õ	ŀĝ	232.8 233.8	180.5	549.0 549.0		:	4,781 5,002	.3561	9-96	. 8	ě	.7
١	85,47	4.03	9.34	0.80	6.62	ì	Ö	\$66.5	222.5	549.0			5.480	,3674 ,4112	9685 9631	. 6	Ò	1:3
ł	59.97 65.92	# .34 4 .74	9,18	10.07 9,77	5.09 5.60	l a	8	292,7 387,8	947,4 285,1	549 B			5.965	4310 4858	.9503 .6398	8	8	
ı	70.87	6.00	9.15 8.40	9,89	7,18		}	354.1 384.8	317.1	548 ig.			7.186	3092	9130	og.	1 8	
1	70,47	5.53	8.02	9.28	7.6) ō	ìã	384.5	350.6	549 Q), 		8.135	.5744	.4812	. 0	Ò	1.0
1	78,87 73,87	5.31 5.26	6.42 5,43	1.50 1.10	7,62 7,65		8	387.8 390.4	248°2	549.0 649.0			8.867 9.330	,8247	,7553 .6704	ę,	1 8	8
	75, 97 77,37	5.26 8.56	4,95	7.80 7.57	7,64	8	8	408.1	359.8 369.7	549.0 549.0		· 	9.740	.6769 .7083	4194	Ď.	1 8	.8
١	82.77 29.97	9.41	9.30	9.56	5,50 5,00	įį	ŀě	140.9	140.0	548 D	====	==	3.420	.9843 .9880	.0791	, j	į	1.0
٠.	29101	,,,,,	2.77		3.08		Pr			Stion, o			5.004	.1000	. 9799			1.0
1	29.95 50.04	26.03	27.05	27.25	3,90	9	0	48.4	44.QE	639.0			1.099	0,5542	0.8934	0	0	0.9
١	20,93	22.07	23.42 10.54	24.11	5.25 5.50	8	8	95.1 141.7	112.8	\$38.0 537.0			1.248	.#154 .#774	.9890 .9834	0	8	1:5
ŀ	30.93 30.13	14.41	16,77 35,15	17.12 15.80	5.94	8	8	175.6 190.7	167.8 178.5	837.0			1.768	.6417	.9798 .8776	8	8	
ł	30.13 20.18	11.14	14.78	15.13	5.9£ 5,95	Ì	ÌĚ	184,4 196.0	379.8	5,656 0,666 0,666			1,944 1,991 2,091	.7345 .4200	.0748	ğ.	ě	1.2
1	30,£5	5.48	14,44 33,14	15,42	5.94	Įĕ	ρ	200.9	178.0	534,0			8.263	,4045	9685	Ò	ŏ	
1	30.98 30.68	5.37 6.84	11,65 9,65	11.90	5.62 5.83	1 8	18	214.9 255.6	197.7	558.D 558.0			2,520 3,978	.4513 .5347	.9780	0	8	1
ŀ	40.08	8,94 8.54	9,54 9,29	9,93	7.80	ĺ	ĺ	346.2 455.8	333.5	559,0 540.0			4.058 5.025	.7009 .8819	3427	Ö	Ì	;
ļ	64.45	2,27	9,26	10,14	10.59	l á	ā	500.5	464.4	40.0			9.347	9106	9348 9086	o o	ŏ	[.9
ı	54,43 54,45	9.21	4,95	8,54 8,14	10.89	6	8	512.8 523.6	499.4 506,2	840,8 541,6			8.072 8,703	1.096	.7294 .4061	0	8	:
ŀ	54,93 56,03	#.25 9.26	4,84	7.45 4.70	10.74	8	8	539.2	519.7 531.1	\$41.0 41.0			7.575 0.273	1.259	.8226	a p	Ì	1
Į	55,05 55,65	9,84	4.48	6,10 8,34	10.77	l š	ā	544.4	640.4	841.8	ļ	l	4 /41	1,616	7311	Ď	ŀė	
ı	35,43	9,54	4 48	4 (85	10.84	l č	į į	¥7.7 \$50.7	365.7 560.5	141.5			10,62 11,64 7,089	1,735	.8275 .8596	ō	! §	1.0
1	55.75	9.39 \$.35	4.40	7,89 8,30	10.96 10.88	8	8	538.0 538.0	526.1 580.5	540.5			7,049 E,714	1:39	.0084 .0019	8	. 8	
١	53.20 53.30	9,93	5.15 5.49	8,30 8.81	10,30	Ì	ğ	808.4 601.8	494,1	840,0 840,0			6,419	1.076	614)	ő	ā	1.0
١	\$5,05	0.99	6.49	9.71	30.38	ه ۱) 0	480.4	447.7	531.5]	8,068 5,467	1.025 ,9258	.7480		Ò	
ſ	83.15 83.85	9.10 9.18	9,96 11,15	10.65	30.35 10.39	8	2	489.4 473.8	472.8	539.5		==	4.9	,8945 ,7848	9371 9630	8	8	
	65.15 40.93	9.17 7.06	15.14	13,66 11,90	10.36 7.80	Ĩ	6	484.7 599.8	443.0	434.5 134.5			4,550 3,901 5,381	.0733 .5435	9448 9487	ě	0	
1	40.15 30,18	7.00	. 24.22	14.44	7.41) õ] [306.0	200.0	630.5 151.4	<u> </u>		2,775	.4096	3754	9	ه ۱	. 27
J	20,18	6.47 6.16	23.02 24.46	13.26	5.10 5.91	2	2	\$10.4 196.9	195.7	638.h			2,673	温:	.9604 ,9711	6	ğ	.8
1	30,18 30,18	11.47 14.51	15.61 14.86	15.38 17,20	5,31 5,30	8	8	177.0 174.1	181.5	038.5 884.2	===		1.785	.7546 .8456	9772	è	ě	
	30.93	8.49	14.78	16,19	8.80		ŏ	194.7	161.4	929	==	i ==	1.500	4826	1001	ĭ	lĭ	1.2

TABLE I - PERFORMANCE VITA TERO SECURDARY AND RESTIARS PLOY

297S

TABLE II - EFFECT OF PRIMARY PRESSURE RATIO ON BACKFLOW

Run	Primary- stream stream pressure Pp (in. mercury absolute)	Secondary- stream total pressure Ps (in. seroury absolute)	Tertiary- stream total pressure Pt (in. mercury absolute)	Ambient exhaust pressure Po (in. mercury absolute)	Primary weight flow Wp (lb/sec)	Secondary weight flow Wa (lb/sec)	weight flow Wt (lb/sec)	Gross thrust of pri- mary nextle with shrouds removed F; (1b) (b)	dross thrust of ejeq- tor Fej (1b)	Primary- stream total temper- ature Tp (OR)	Becondary- strons total temper- ature Ts (OR)	Tertiary- stream total temper- ature Tt	Primary pressure ratio Pp/Po	Secondary pressure ratio P _p /P _O	Tertiary pressure ratio Pt/PD	Becondary weight- flow ratio We Tr	reight flow	dross- thrust ratio Pej/Fj
\vdash	ļ	 _		l			Pri	mry-no			losed		1 300	0.0056	0.9959	-0,00085	0.00065	0.9807
1 2 3 4 5 8 10 11 12 13 14	29,81 29.88 30,11 29.81 29.91 40,31 50.06 60.16 70,56 78.81 79.61	28.68 23.71 19.58 17.07 14.85 11.78 9.92 8.01 4.79 5.39 5.78 5.56	26.70 23.76 19.64 17.17 14.97 11.94 10.0 9.59 9.80 9.15 8.08 8.21 5.37 5.21	25.81 23.87 19.78 17.29 15.08 11.95 10.10 9.86 10.03 9.82 10.01 9.88 8.97 8.14	1.72 2.20 2.67 2.75 2.97 2.97 2.97 4.00 5.08 6.09 7.12 7.98 8.08 8.12	-0.00111 00249 00367 00367 00362 00251 00162 00706 0121 0018 00786 00589 00408	0,00111 .00249 .00387 .00387 .00382 .00244 .00251 .00162 .00708 .0121 .00758 .00599 .00599	112.6 122.2 182.3 236.7 294.9 352.5 400.3 409.2 415.4 415.7	41.95 72.52 90.30 104.5 122.5 128.0 189.1 228.2 258.8 319.2 384.7 573.3 586.1 385.4	858.0 558.0 538.0 538.0 538.0 538.0 538.0 538.0 539.0 539.0 539.0 539.0	540.0 542.0 542.0 542.0 542.0 542.0 542.0 542.0 542.0 543.0 543.0 543.0 543.0	542.0 541.0 541.0 540.0 540.0 538.0 538.0 538.0 532.0 532.0 532.0 532.0 532.0	1.127 1.245 1.512 1.727 1.997 2.495 4.092 4.092 4.991 6.126 7.049 7.959 8.875 9.828	0.9962 .9933 .9939 .9873 .9854 .9858 .9822 .9533 .7986 .4878 .5365 .6018 .6444 .8812 .7088	9954 9929 9851 9929 9851 9908 9801 9571 9518 9081 8501 7101 6400 8430	-,00115 -,00145 -,00131 -,00112 -,00082 -,00040 -,00159 -,00168 -,00086 -,00086 -,00086	.00115 .00145 .00131 .00182 .00082 .00084 .00140 00139 00186 00095 00095 .00050	1.051 1.085 1.092 1.077 1.085 1.048 1.058 .9859 .8775 .9044 .9108 .9121
⊢ =	1	·					P.	· LEAT Y-C	ozzle p		open	7	1	1 0 0000	0.9937	0.0039	-0.0039	0.9131
16 17 16 16 20 21 22 22 22 23 24 25 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	50.08 29.98 29.88 50.05 50.13 2 50.06 2 50.06 49.83 40.83 40.83 6 60.53 8 60.53	28.10 22.58 17.90 14.85 11.89 6.84 6.28 6.05 7.55 9.76 5.42 8.50 8.52 8.29 8.29	27.01 25.90 19.94 14.89 14.71 13.41 11.59 9.74 9.61 9.45 5.65 8.25 4.85 5.27		9,45 9,80 9,81	0,0154 ,0186 ,0190 ,0179 ,0108 ,0244 ,0205 ,0182 ,0125 ,0058 ,0079 0 -,0108 -,0108	-0.0154 -0185 -0189 -0179 -0188 -0244 -0805 -0185 -0186 -0058 -0079	49.06 92.22 139.1 170.2 193.8 206.7 219.0 254.4 475.4 475.4 448.3 482.1 498.8	88.88		848.0 547.0 648.0 844.0 543.0 541.0 538.0 538.0 536.0 536.0 536.0 536.0 536.0	543.0 543.0 543.0 543.0 543.0 543.0 543.0 542.0 542.0 542.0 542.0 542.0	1.105 1.245 1.484 1.751 2.187 2.530 2.981 4.019 4.946 6.165 5.409 6.866 7.827 9.302	0.9603 .9240 .8861 .6592 .7865 .4819 .5282 .6028 .7522 .7522 .7522 .1289 1.289 1.550	9878 9822 9788 9785 9751 9748 9701 9800 9394 8142 9210 7190 7278	,0056 ,0055 ,0051 ,0032 ,0042 ,0056 ,0006 ,0006 ,0008 0 -,0011 -,0011	0038 0035 0032 0032 0042 0036 0036 0006 .0008 0 .0011 .0011	.9640 .9252 .9522 .9391 .6762 .9249 .9433 .9721 .9784 .9846 .9781 .9848 .98781

Angative values indicate blackflow.

byslues obtained from nozzle calibration.

TABLE III - DYTERACTION OF SECONDARY AND TERTIARY SYSTEMS

Run	Primary- stream total pressure Pp (in. mergury absolute)	Secondary- stress total pressure Ps (in. mercury absolute)	Tertiary- stream total pressure Pt (in. mercury sbsolute)	Ambient exhaust preasure Po (in. meroury absolute)	Primary weight flow Wp (1b/sap)	Secondary weight flow Wa (1b/seq)	Tertiory weight flow Wt (lb/sec)	Chrose thrust of pri- mary nozzle with shrouds removed Fj (1b)	dross thrust of ejec- tor Pej (1b)	Primary- stream total temper- ature Tp (OR)	Secondary- stream total temper- ature T _B (ON)	Tertiary- stream total temper- ature Tt (°R)	Primary pressure ratio Pp/Po	Secondary pressure ratio P _m /P _O	Tertiary pressure ratio P _V /P _O	Secondary weight-flow ratio	weight flow ratio	Gross- thrust ratio P _e y/P _j
							Pr	iwary-no	sale po	eitlon, o	losed							
1 2 5 4 5 6 7 8 9 10 11 12	29.96 29.91 29.91 29.86 29.86 29.86 29.86 29.86 29.86 29.86 29.86	15.03 15.02 15.02 15.02 15.04 15.02 10.07 10.28 10.99 15.16 9.77 9.35	10.02 10.11 10.27 10.52 10.93 11.59 13.03 13.05 13.04 13.04 13.05	10.0 10.0 10.0 10.0 10.02 10.0 10.0 10.0	5.04 5.03 5.03 5.03 5.03 5.03 3.02 3.02 5.02 5.03 5.03	0.561, .564 .584 .588 .587 .275 .317 .427 .592 .250	0.058 .132 .198 .272 .342 .456 .597 .595 .599 .597 .599	122.9 122.7 123.6 122.9 122.5 122.4 121.7 122.5 122.5 122.5 123.1 122.4	127.5 126.6 125.8 128.7 127.3 133.0 153.0 154.4 137.9 135.1 135.7 132.8	539.0 539.5 540.5 540.6 548.0 548.0 548.0 544.5 845.0 546.0 546.0	554.0 555.6 857.8 359.0 539.0 540.0 540.6 841.0 542.9 542.0	650.0 635.0 536.0 537.5 536.0 559.5 559.5 540.5 540.5 540.5	2.998 2.991 2.991 2.996 2.998 2.998 2.973 2.988 2.973 2.988 2.985 2.985 2.985	1.505 1.302 1.303 1.302 1.301 1.302 1.000 1.028 1.028 1.028 1.317 .2798	1.002 1.011 1.027 1.032 1.091 1.169 1.302 1.303 1.304 1.305 1.305	0.1902 .1920 .1922 .1930 .1938 .1938 .1938 .1946 .1409 .1046 .1409 .1955 .0822 .0452	0.0189 .0455 .0856 .1124 .1499 .1972 .1961 .1975 .1968 .1947 .2008	1.036 1.032 1.026 1.047 1.047 1.087 1.093 1.099 1.122 1.106 1.086
					γ						epen							
15 14 15 16 17 18 19 20 21 22 25 24 25 26 27	\$0.12 \$9.87 \$0.12 29.82 29.82 29.97 30.02 30.04 30.09 \$0.09 \$0.09 \$0.14	13.01 13.05 13.05 13.05 15.05 15.05 15.01 13.05 9.98 10.49 11.10 11.81 12.35 13.04	10.00 10.11 10.03 10.21 10.59 10.62 11.17 13.06 12.95 15.00 13.00 13.00 15.00 15.00	9,98 10,03 10,01 10,01 10,01 10,0 10,0 10,0	5,89 8,89 5,88 5,86 5,87 5,85 5,85 5,84 5,85 5,86 5,86 5,86 5,86 5,86	0.577 .589 .589 .509 .589 .589 .589 .589 .255 .304 .448 .507 .787	0.0847 .1298 .0784 .1981 .2476 .3090 .3991 .8370 .651 .647 .651 .626 .817 .812	257.0 255.5 255.9 256.8 258.9 258.9 258.8 256.8 256.8 256.8 256.8 257.2 257.0	250.5 848.9 249.6 251.0 249.6 251.0 265.1 248.9 251.0 253.7 263.7 267.4 260.9 262.4	540.5 542.0 542.0 542.6 541.0 541.0 541.0 546.0 546.0 546.0 547.0	541.0 545.5 547.0 547.0 547.0 547.0 542.0 544.0 548.0 548.0 548.0	558.0 541.5 542.0 543.5 544.5 544.5 544.0 544.0 544.0 548.0 547.5 548.0 547.5	5.018 2.995 2.994 5.009 2.989 5.000 5.002 5.002 5.015 5.015 5.016 5.016 5.017	1.504 1.504 1.504 1.502 1.505 1.504 1.501 1.501 1.501 1.112 1.118 1.118 1.237 1.507 1.546	1.002 1.008 1.009 1.037 1.085 1.117 1.305 1.305 1.305 1.305 1.305 1.305 1.305	0.0850 .1005 .1005 .1005 .1009 .1017 .1010 .1019 .0455 .0820 .0768 .0828 .0768 .1014 .1118	0.0111 .0220 .0130 .0333 .0422 .0526 .0684 .1070 .1113 .1096 .1077 .1072 .1065 .1047	1.056 1.057 1.062 1.080 1.054 1.054 1.054 1.081 1.089 1.086 1.100 1.107

*Values obtained from nomale calibration.

m=n	Primary- surem surem pressure Pp (in. descury absolute)	Secondary- strain total pressure P _R (in. mercury sheelute)	Tertiary- stream total pressure Tt (is. maroury absolute)	Ambient exhaust pressure Po (in. meronry absolute)	Primary weight flow Wp (lb/mes)	Becordary weight flow W _B (lk/sea)	Tertiary weight flow W _t (1b/sec)	drough through of pri- mary nearly with abrouds reserved [1] [1b]	from throat of a jac - tor Faj (16)	Printry- stream total temper- ature (OE)	Secondary- atrees total temper- ature T _a (°R)	Tertiary- atrees total temper- ature T _E (OR)	Printry pressure retio Pp Po	Secondary pressure ratio Ps/Pg	Paris Paris Paris	Secondary weight- rice rice retto W _a - /V _e W _b - /V _e	Tertiany weight flow ratio	throat- thrust ratio Faj/Fj
_		L	L	·			. 17	langry-no	ssle po	sition, e	losed							 .
1.457人167年9以上是17年11日1日的日本公司的企業的企業的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的	6.2000年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.200年,19.20	97.4.54.00.0.0.1577.12.0.0.0.0.157.7.0.0.0.0.157.7.1.12.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	701710011901187151111871117891189113118932880255877886877885855658565847811111111111111111111111111111111111	27.184 27.282 27.382 27.282 27.282 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27.203 27	1.687 1.688 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188	0.145 .807 .888 .838 .838 .408 .888 .408 .888 .408 .888 .408 .888 .408 .888 .408 .888 .408 .888 .408 .888 .408 .888 .408 .888 .408 .888 .88	0.087 .1481 .821 .828 .4307 .5078 .121 .828 .4307 .5078 .121 .200 .200 .200 .200 .200 .200 .200	97(-84) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(-97) 114(22.17.52.27.52.17.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.52.27.27.52.27.27.27.27.27.27.27.27.27.27.27.27.27	5570.00.50.00.00.00.00.00.00.00.00.00.00.00	580,50,50,50,00,53,00,00,50,00,00,00,00,00,00,00,00,00,00,	\$59.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5 \$61.5	1.104 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109 1.109	1.0001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001	1.001 1.001 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.004 1.005 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006	0.0845 .1823 .1485 .1485 .1485 .1485 .1485 .1485 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582 .1582	0.0850 .0850 .0850 .1085 .1085 .1085 .1085 .1085 .2080 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800 .0800	1,081 1,031 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103 1,103

Staines obtained from notale calibration.

stress total pressure p (in, mersury	stream total promoter profits	ST-ONLY	Ambient exhaust pressure Po (in. meroury sbsolute)	Primary Weight Flow Up (1b/sec)	Sescodary weight flow V _s (lh/sec)	Tertiary weight flow Wt (1b/seo)	thrust of pri- mary nomic with shrouds repored	Green thrust of Ser 12 (12)	Primary- stream total temper- ature Tp (OR)	Secondary- stream total temper- ature T _B (On)	Tertialy- strees total temper- ature T _t (OR)	Primary pressure ratio Pp/Pp	Fedgments pressure ratio P _S /P _D	Tertiary pressure ratio Pu/Ro	secondary seight flow ratio Va 7 7a	Helght Flow	Ground Married Payl
absolute)	absolute) at	hablube)			L:		(3b) (a)						·	ļ			
1 20.119 2 5 50.124 2 5 50.246 3 50.124 3 5 5 50.246 3 5 5 50.246 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	90.96 21.45	77.00 77.27 77.27 77.27 77.32 77.48 190.0114 190.00114 190	27.140 27	25.544550以の以外355355以内の3564編84866244886355555555以内の以外35535555以内の以外3553555以内の以外3553555以内の3564編8486624488655555555555555555555555555555	0,250 0,250 3545 3544 454 456 456 457 3584 458 458 458 458 458 458 458 458 458	124 00 00 00 00 00 00 00 00 00 00 00 00 00	99.54 50.59 50.09 51.34 50.34 49.75 144.7 144.8 145.3 144.8 145.3 144.8 145.3 144.8 145.4 144.8 145.4 144.8	19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	#1100 0 #551.0	변화	548.0 549.0 551.0 552.0 554.0 554.0 554.0 554.0 554.0 554.0 554.0 552.0 554.0 552.0 554.0 552.0 554.0 552.0 553.0 554.0 55	1.113 1.112 1.1103 1.1110 1.1104 1.1110 1.1107 1.1500 1.1501 1.15	0.9999 1.001 1.005 1.005 1.006 1.007 1.006 1.007 1.006 1.007 1.008 1.007 1.008 1.007 1.008 1.007 1.008 1.007 1.008 1.008 1.007 1.008	0.9845 1.005	0.0892 0.0892 0.0892 0.0898 1.1227 1.751 0.0804 1.1227 0.771 0.771 0.776 0.0804 1.121 0.081	0.0583 .0462 .0653 .0942 .1190 .0553 .0553 .0563	

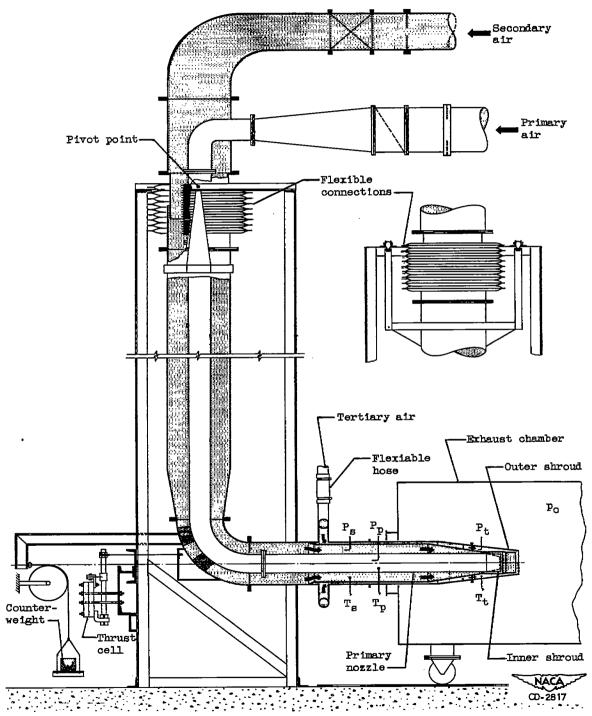
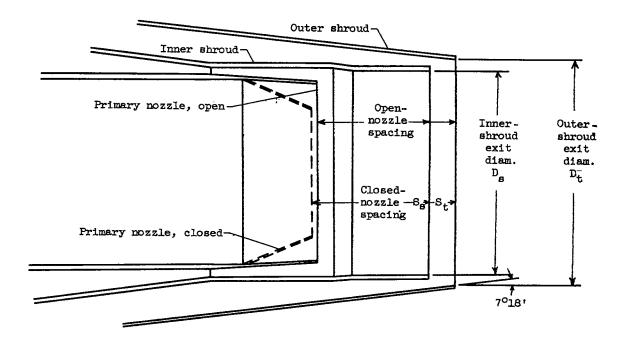



Figure 1. - Ejector-research facility.

						J. WY	مرسر 🕰
Nozzle position	D _p (in.)	D _s /D _p	s _s /d _p	D _t /D _p	s_t/D_p	D _t /D _s	s _t /d _s
Open	4.79	1.18	0.59	1.32	0.75	1.12	0.635
Closed	3.49	1.62	.86	1.80	1.07	1.12	. 663

Figure 2. - Ejector notation and description of ejector models.

Figure 3. - Double-shroud ejector performance. Zero cooling-air flow.

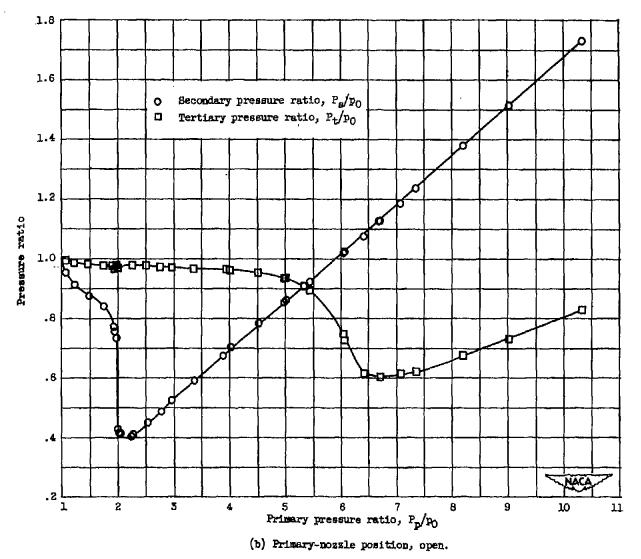


Figure 3. - Concluded. Double-shroud ejector performance. Zero cooling-eir flow.

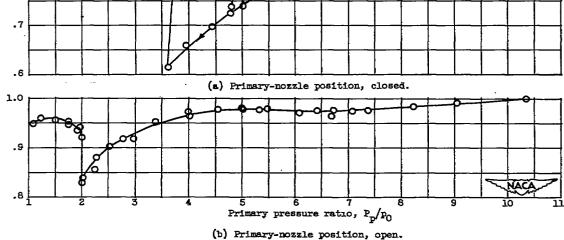


Figure 4. - Effect of primary pressure ratio on gross thrust ratio. Zero cooling-air flow.

/

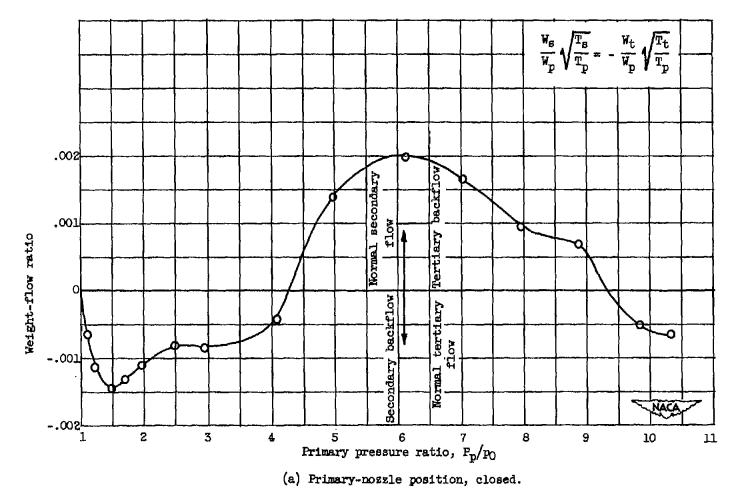
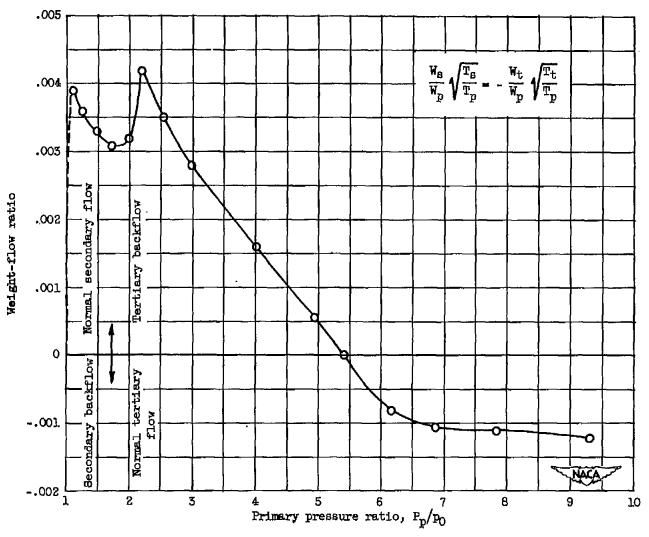



Figure 5. - Effect of primary pressure ratio on backflow.

(b) Primary-nozzle position, open.

Figure 5. - Concluded. Effect of primary pressure ratio on backflow.

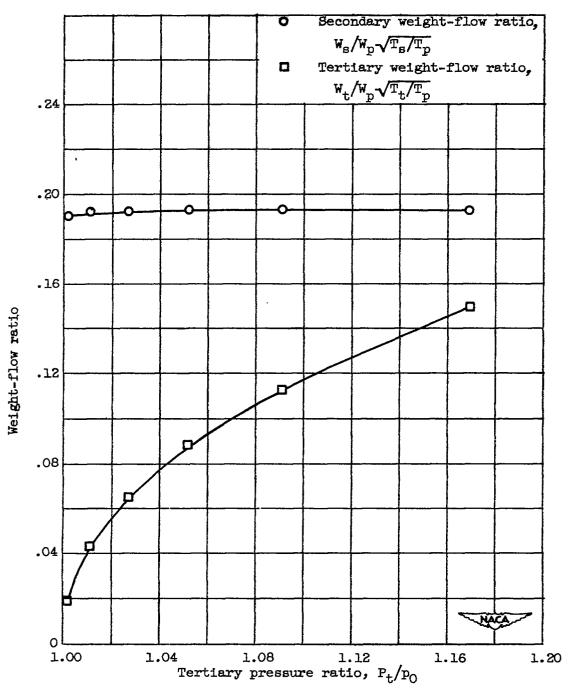


Figure 6. - Effect of tertiary pressure ratio on secondary and tertiary weight-flow ratios with primary nozzle in closed position. Primary pressure ratio, P_p/P_0 , 2.99; secondary pressure ratio, P_s/P_0 , 1.302.

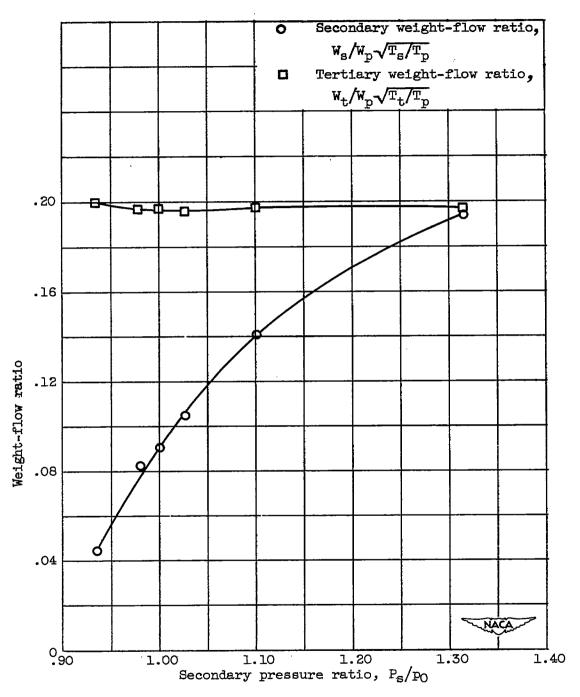


Figure 7. - Effect of secondary pressure ratio on secondary and tertiary weight-flow ratios with primary nozzle in closed position. Primary pressure ratio, P_p/p_0 , 2.99; tertiary pressure ratio, P_t/p_0 , 1.304.

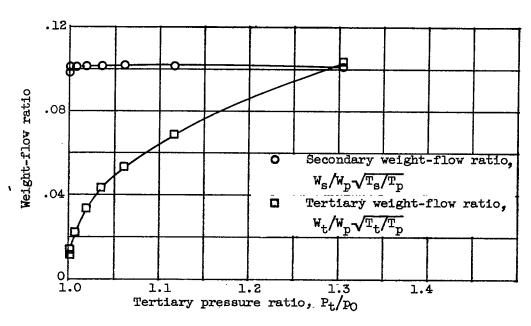
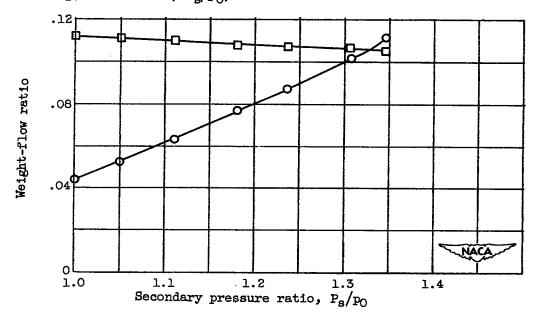
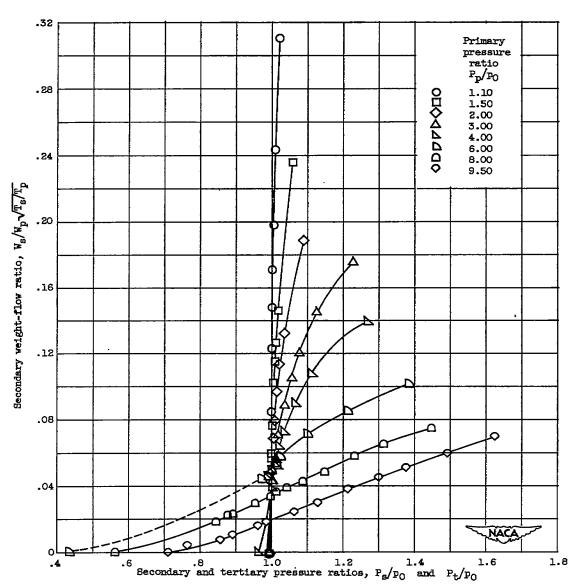
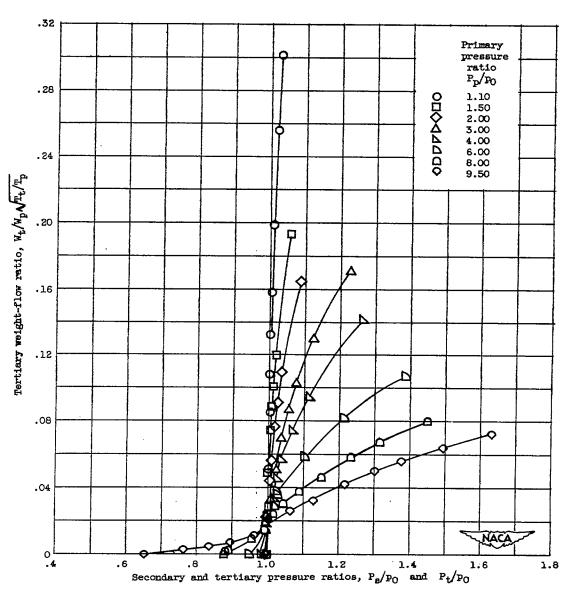


Figure 8. - Effect of tertiary pressure ratio on secondary and tertiary weight-flow ratios with primary nozzle in open position. Primary pressure ratio, P_p/p_0 , 3.0; secondary pressure ratio, P_s/p_0 , 1.304.

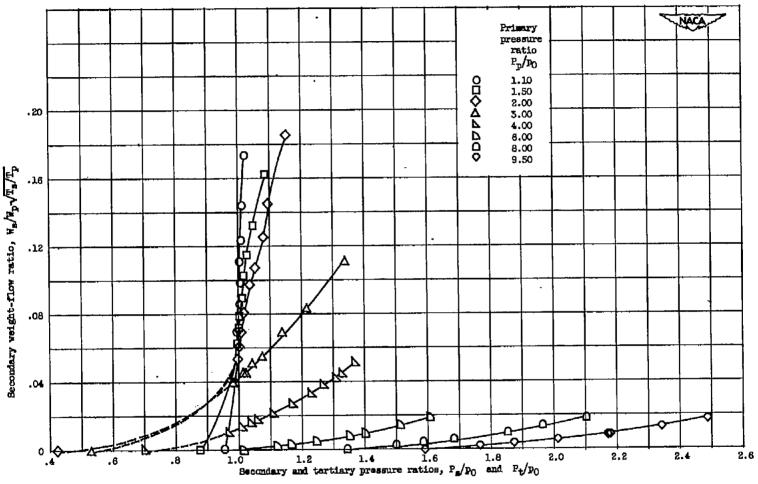




Figure 9. - Effect of secondary pressure ratio on secondary and tertiary weight-flow ratios with primary nozzle in open position. Primary pressure ratio, P_p/p_0 , 3.015; secondary pressure ratio, P_s/p_0 , 1.303.

(a) Effect of secondary and tertiary pressure ratios on secondary weight-flow ratio.

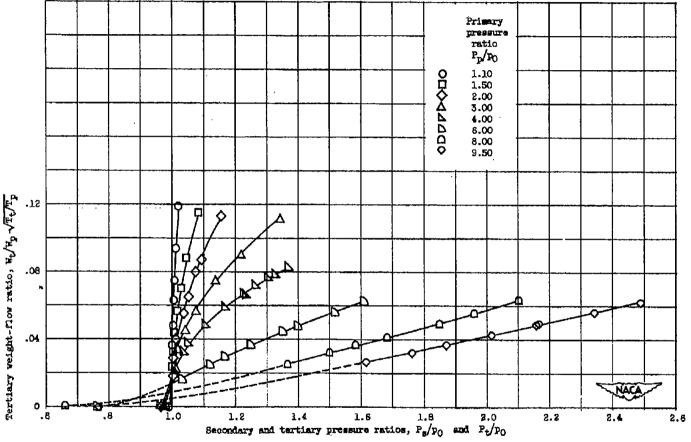
Figure 10. - Double-shroud ejector pumping characteristics with primary nozzle in closed position.

NACA RM E52K17



30

(b) Effect of secondary and tertiary pressure ratios on tertiary weight-flow ratio.


Figure 10. - Concluded. Double-shroud ejector pumping characteristics with primary nozzle in closed position.

200

(a) Effect of secondary and tertiary pressure ratios on secondary weight-flow ratio.

Figure 11. - Ejector pumping characteristics with primary nozzle in open position.

(b) Effect of secondary and tertiary pressure ratios on tertiary weight-flow ratio.

Figure 11. - Concluded. Ejector pumping characteristics with primary nozzle in open position.

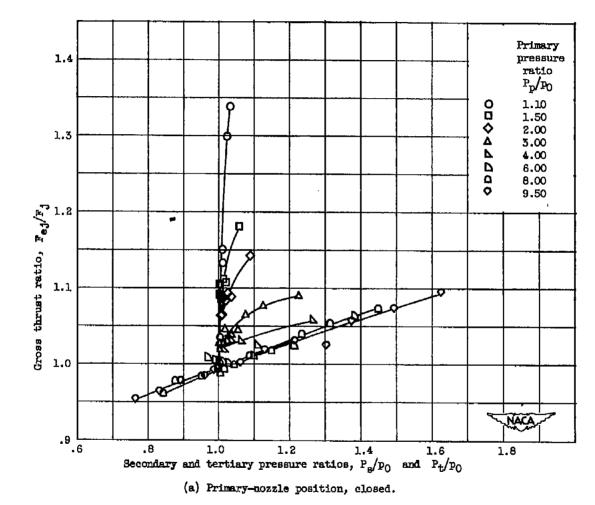


Figure 12. - Double-shroud ejector thrust characteristics.

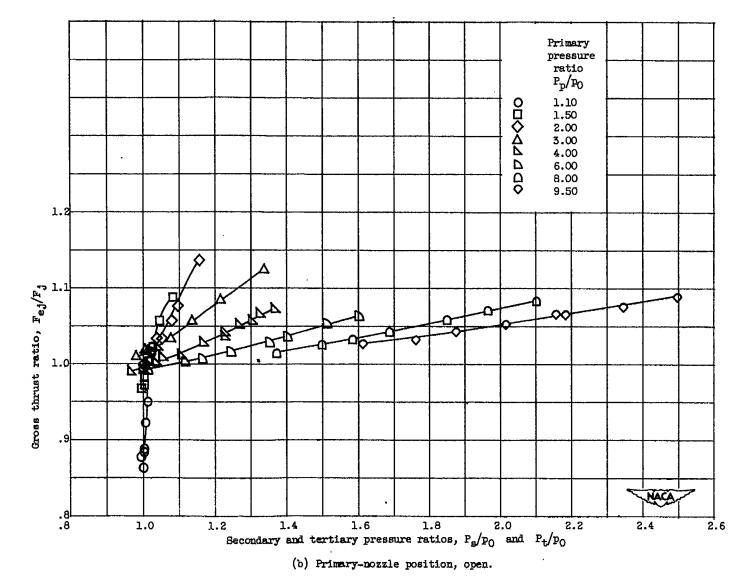


Figure 12. - Concluded. Double-shroud ejector thrust characteristics.

ACA-Langley - 2-10-53 - 4

SECURITY INFORMATION

3 1176 01435 6480

Ĺ

_

.

ŧ

Į

š

. ...

.

.. .